A robust EM clustering algorithm for Gaussian mixture models
نویسندگان
چکیده
Clustering is a useful tool for finding structure in a data set. The mixture likelihood approach to clustering is a popular clustering method, in which the EM algorithm is the most used method. However, the EM algorithm for Gaussian mixture models is quite sensitive to initial values and the number of its components needs to be given a priori. To resolve these drawbacks of the EM, we develop a robust EM clustering algorithm for Gaussian mixture models, first creating a new way to solve these initialization problems. We then construct a schema to automatically obtain an optimal number of clusters. Therefore, the proposed robust EM algorithm is robust to initialization and also different cluster volumes with automatically obtaining an optimal number of clusters. Some experimental examples are used to compare our robust EM algorithm with existing clustering methods. The results demonstrate the superiority and usefulness of our proposed method. & 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Robust Method for E-Maximization and Hierarchical Clustering of Image Classification
We developed a new semi-supervised EM-like algorithm that is given the set of objects present in eachtraining image, but does not know which regions correspond to which objects. We have tested thealgorithm on a dataset of 860 hand-labeled color images using only color and texture features, and theresults show that our EM variant is able to break the symmetry in the initial solution. We compared...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملFast and Robust Gaussian Mixture Model for Mri Brain Image Segmentation
Image segmentation is crucial and preliminary stage of almost all medical imaging diagnosis tools. Gaussian Mixture Model (GMM) is one of common methods for image segmentation and usually, Expectation Maximizing (EM) is used to estimate the parameters of this model. In order to improve EM performance in presence of noise, an extension for EM is proposed which incorporates mean-filtered image as...
متن کاملA Genetic EM Algorithm for Learning the Optimal Number of Components of Mixture Models
Mixture models have been widely used in cluster analysis. Traditional mixture densities-based clustering algorithms usually predefine the number of clusters via random selection or contend based knowledge. An improper pre-selection of the number of clusters may easily lead to bad clustering outcome. Expectation-maximization (EM) algorithm is a common approach to estimate the parameters of mixtu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 45 شماره
صفحات -
تاریخ انتشار 2012